Environmental surfaces can be a source of pathogens that cause gastrointestinal illnesses. Some pathogens have been shown to survive for long periods of time on surfaces. For example, hepatitis A virus and rotavirus can survive for up to one month on hard, non-porous surfaces, while norovirus can survive up to 56 days on the same types of surfaces. Surfaces in a child-care center can become contaminated in two ways, by direct contact with bodily fluids, such as vomit or fecal matter, or through indirect contact with other contaminated objects, such as improperly cleaned wiping cloths, food, or hands. Therefore, cleaning and decontamination of environmental surfaces is essential to preventing gastrointestinal illnesses.

In order to prevent illness, detergent-based cleaning alone is not sufficient to remove pathogens. Research conducted by Barker et al. and others showed that cleaning with a detergent alone failed to decontaminate tested surfaces in all but one case. When surfaces were treated with a solution containing 5000 ppm chlorine for 1 minute, noroviruses were only recovered from one surface. Therefore, a sanitizer or disinfectant must be used after cleaning.

In order to choose the proper product, it is important to understand the differences and proper uses of disinfectants and sanitizers. Both disinfectants and sanitizers are designed to kill microorganisms, but have different applications. First, sanitizers are used on food-contact surfaces and soft surfaces, such as textiles, fabrics, and carpeting, and disinfectants are used on all hard surfaces that are not considered food-contact surfaces. Another difference is that disinfectants are used to destroy or irreversibly inactivate the microorganisms listed on their label, which may include bacteria, fungi, and/or viruses, but not necessarily spores. Disinfectants also tend to be used at much higher concentrations and usually have a longer contact time. Whereas, sanitizers tend to be used at lower concentrations for a shorter period of time. No perfumes are allowed in food-contact sanitizers, whereas perfumes are often used in disinfectants.

In addition, sanitizers for food-contact surfaces must reduce the bacterial count by 5 logs or 99.999%. Sanitizers used on soft surfaces must reduce bacterial counts by 3 logs or 99.9%. The EPA method for testing the efficacy of some sanitizers by targeting Salmonella Typhi is on cleaned food-contact surfaces uses Salmonella Typhi as the target organism. Examples of sanitizers, when testing include halide compounds such as iodophors and chlorine-based chemicals. Escherichia coli and Staphylococcus aureus are used as target organisms when testing the efficacy of quaternary ammonium compounds. It is important to note that sanitizers are not effective against viruses and fungi. The most commonly used sanitizers in food production environments are chlorine, quaternary ammonium, and iodine. The FDA and the USDA clearly state approved concentrations of sanitizers in their respective regulations. Too high or too low of a concentration is a violation of these regulations.

Both sanitizers and disinfectants are regulated by the U.S. Environmental Protection Agency (EPA). The EPA maintains a list of registered sanitizers and disinfectants on their website. The Pesticide Product Labeling System (PPLS) is at: http://iaspub.epa.gov/apex/pesticides/?p=102:1:647 7914021094066.
PRACTICES

If a product is registered with the EPA and described as a sanitizer or disinfectant, it can be used in a child-care setting as stated on the label. Check the label to determine the contact time, whether it needs to be rinsed off, and any other precautions to take when handling.

Factors Affecting The Efficacy Of Both Sanitizers And Disinfectants

Number and location of microorganisms
- The amount of time needed to kill microorganisms increases with the number of microorganisms present.
- Food-contact equipment with multiple pieces must be disassembled to ensure that all parts are thoroughly cleaned and sanitized.
- Surfaces with crevices are more difficult to sanitize and disinfect than flat surfaces because penetration to all parts areas of the surface may not occur.
- Fabrics can only be sanitized, not disinfected.

Innate resistance of microorganisms
- Unlike Gram-positive bacteria, Gram-negative bacteria have an outer membrane that acts as a barrier to the uptake of sanitizers and disinfectants. Gram-negative bacteria include *Escherichia coli*, *Campylobacter jejuni*, and *Salmonella* spp (making it more difficult to kill these organisms).
- Non-enveloped viruses, which are hydrophilic ("water loving") and do not contain lipids, are less susceptible to germicides than enveloped viruses, which are hydrophobic ("water hating") and contain lipids in their envelope. Non-enveloped viruses include norovirus, hepatitis A virus, and rotavirus. Enveloped viruses include influenza, smallpox, and human immunodeficiency virus (HIV).
- Spores are resistant to disinfection because the spore coat and cortex act as a barrier. Spore-forming bacteria include Clostridia and Bacillus species.

Concentration and potency of sanitizers and disinfectants
- The more concentrated the chemical used, the greater its efficacy and the shorter time that is necessary to kill the microorganism, with the exception of iodophors. Because disinfectants are used at a higher concentration than sanitizers, they can achieve complete destruction of microorganisms whereas sanitizers only achieve a 3-5-log reduction.

Physical and chemical factors
- **Temperature**: The activity of most disinfectants and sanitizers increases as the temperature increases, but there are some exceptions. Too great of an increase in temperature can cause the disinfectant or sanitizer to degrade.
- **pH**: An increase in pH improves the antimicrobial activity of some sanitizers and disinfectants (glutaraldehyde and quaternary ammonium compounds), but decreases the activity of others (phenols, hypochlorites, and iodine).;
- **Water hardness**: This reduces the kill rate in certain sanitizers’ and disinfectants. rate of kill.
Organic and inorganic matter
- Organic matter, such as fecal matter, vomit, or food residue, can interfere with the antimicrobial activity of sanitizers and disinfectants by interacting with the chemicals in the germicide and reducing the level of activity or by protecting the microorganisms from attack by acting as a physical barrier.

Duration of exposure
- Sanitizers and disinfectants have a minimum contact time that surfaces must be exposed to the product.
- In general, longer contact times are more effective than shorter contact times.

By law, all applicable label instructions on EPA-registered products must be followed.

Biofilms
- Biofilms are microbial communities that are tightly attached to surfaces and surrounded by an extracellular matrix that protects them from the effects of sanitizers and disinfectants.
- Bacteria within biofilms are up to 1,000 times more resistant than are the same bacteria in suspension.
- No products are EPA-registered or FDA-cleared to degrade biofilms.

Surface Compatibility
- Determine whether the sanitizer or disinfectant is compatible with the surfaces on which it will be used. Mainly, determine that there will be no change in the function or appearance of the surfaces from the use of the product.
- Do not use products that are corrosive such as iodine, especially on metals.
- Plastic can be damaged by frequent or extended exposure to alcohol.

Attributes of Common Sanitizers Allowed in Foodservice Settings

Chlorine (sodium hypochlorite) compounds
- For food-contact sanitizing, the chlorine concentration must not exceed 200 ppm.
- At sanitizer levels, chlorine is effective against all vegetative bacteria.
- They are less effective in the presence of organic matter, such as food soil.
- They are unaffected by water hardness.
- They are effective between a pH range of 6-8. Most water is near neutral pH (7).
- Use at temperatures between 55°F to 120°F (13°C to 49°C).
- The strength decreases over time. (For open buckets, make fresh solutions daily; frequently throughout the day. Sanitizers stored in opaque spray bottles can be prepared once per week if allowed by the appropriate regulatory authority.)
- They may corrode metal surfaces and bleach and damage fabrics.

Iodine
- Iodophors are a combination of iodine and a stabilizing agent or carrier.
- Dilutions of iodophors present more rapid bactericidal action than a full-strength solution.
- For food-contact sanitizing, iodine solutions must have a concentration between 12.5 and 25 ppm.
- At sanitizer levels, iodine solutions are rapidly effective against most vegetative bacteria.
• Gram-negative bacteria can survive or grow in the solution.
• The optimum pH is 5.0 or less.
• It is not suitable in the presence of organic matter.
• Solutions must have a minimum temperature of 68°F (20°C). It decomposes when heated above 104°F (40°C).
• It may stain skin and cause irritation.
• Prepare solutions daily.
• It does not leave toxic residues.
• Do not use on aluminum or copper.

Quaternary ammonium compounds

• Food-contact sanitizing solutions of quaternary ammonium compounds must not have a concentration exceeding 200 ppm.
• They are effective against Gram-positive bacteria and lipid-containing, enveloped viruses.
• They have no activity against spores.
• Solutions must have a minimum temperature of 75°F (24°C).
• Gram-negative bacteria can survive or grow in the solution.
• They are inactivated by proteins, soap, and anionic detergents.
• High water hardness can decrease their activity. Use with water that has a hardness of 500 mg/L or less.

Attributes of Common Disinfectants

Chlorine (sodium hypochlorite) compounds

• They are effective against a wide variety of microorganisms (vegetative bacteria and viruses, including norovirus).
• They are less effective in the presence of organic matter (such as blood). The concentration must be increased to retain action.
• They are unaffected by water hardness.
• They are effective between a pH range of 6-8. Most water is at neutral pH (7).
• The strength decreases over time. (For open buckets, make fresh solutions daily throughout the day. Disinfectants stored in opaque spray bottles can be prepared once per week if allowed by the appropriate regulatory authority.)
• High concentrations corrode metal surfaces and bleach and damage fabrics.
• They do not leave toxic residues.

Alcohols (ethyl alcohol or isopropyl alcohol)

• They are effective against fungi, vegetative bacteria, Mycobacterium species, and some viruses, including norovirus.
• They are not effective against spores.
• They are most effective at 60%-90% in water. Activity drops sharply when diluted below a 50% concentration.
• They may swell rubber or harden plastics.
• Do not use near flames due to flammability.
Iodine
- Iodophors are a combination of iodine and a stabilizing agent or carrier.
- It is rapidly effective against most microorganisms (vegetative bacteria, mycobacteria, and viruses).
- Gram-negative bacteria can survive or grow in the solution.
- Dilutions of iodophors demonstrate more rapid bactericidal action than does a full-strength solution.
- The optimum pH is neutral to acidic.
- It is not suitable in the presence of organic matter.
- It may stain skin and cause irritation.
- Prepare solutions daily.
- It decomposes when heated above 104°F (40°C).
- Do not use on aluminum or copper.

Glutaraldehyde
- It is active against vegetative bacteria, spores, fungi, and many viruses.
- It may cause dermatitis. Wear protective gloves when handling materials that have been immersed in glutaraldehyde.
- The shelf-life is 14 days. Discard if turbid.
- It is commercially available as 2% w/v aqueous solution which must be made alkaline (pH 7.5-8.5) to “activate” (e.g. by addition of 0.3% sodium bicarbonate). It is also available in stable glycocomplexed form, which does not require addition of an alkaline buffer.

Hydrogen peroxide
- It is active against a range of microorganisms (vegetative bacteria, yeasts, viruses including norovirus, spores and fungi).
- Fungi, spores and enteric viruses require higher concentration.
- It does not have toxic end-products of decomposition.
- Do not use on aluminum, copper, zinc, or brass.

Phenolics
- They are active against bacteria and lipid-containing, enveloped viruses.
- They are not active against spores and non-lipid-containing, non-enveloped viruses.
- Gram-negative bacteria can survive or grow in the solution.
- They are active in the presence of organic matter.
- They are absorbed by porous materials and the residual disinfectant can irritate tissue.

Quaternary ammonium compounds
- They are effective against Gram-positive bacteria and lipid-containing, enveloped viruses.
- They do not have activity an effect against spores.
- Gram-negative bacteria can survive or grow in the solution.
- They are inactivated by proteins, soap, and anionic detergents.
- High water hardness can decrease their activity.
Activity of Different Types of Disinfectants

<table>
<thead>
<tr>
<th>Toxicity Against</th>
<th>Active Disinfecting Ingredient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phenolics</td>
</tr>
<tr>
<td>Fungi</td>
<td>good</td>
</tr>
<tr>
<td>Bacteria (Gram +/-)</td>
<td>good</td>
</tr>
<tr>
<td>Mycobacteria</td>
<td>fair</td>
</tr>
<tr>
<td>Spores</td>
<td>none</td>
</tr>
<tr>
<td>Lipid viruses</td>
<td>slight</td>
</tr>
<tr>
<td>Non-lipid viruses</td>
<td>variable</td>
</tr>
</tbody>
</table>

Recommended Concentration Levels For Disinfectants

<table>
<thead>
<tr>
<th>Disinfectant</th>
<th>Concentration or Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutaraldehyde, aqueous</td>
<td>2%</td>
</tr>
<tr>
<td>Hydrogen peroxide, stabilized</td>
<td>2%</td>
</tr>
<tr>
<td>Iodophors</td>
<td>30-50 mg of free iodine per liter; 70-150 mg of available iodine per liter</td>
</tr>
<tr>
<td>Chlorine compounds</td>
<td>500-5,000 mg of free chlorine per liter</td>
</tr>
<tr>
<td>Alcohol (ethyl; isopropyl)</td>
<td>70%</td>
</tr>
<tr>
<td>Iodine and alcohol</td>
<td>0.5% + 70%</td>
</tr>
<tr>
<td>Phenolic compounds, aqueous</td>
<td>0.5-3%</td>
</tr>
<tr>
<td>Quaternary ammonium compounds, aqueous</td>
<td>0.1-0.2%</td>
</tr>
</tbody>
</table>
REFERENCES

AUTHORS: Cortney Miller, M.S., Angela Fraser, Ph.D., Ashley RiverRoman Sturgis, M.F.A. (Eeditor) Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634

Published: June 25, 2012

Revised: October 9, 2012

This material is based upon work supported by the Cooperative State Research, Education and Extension Service, U.S. Department of Agriculture, under Agreement No. 2008-51110-04335, the National Integrated Food Safety Initiative of the Cooperative State Research, Education, and Extension Competitive Grants Program. Any opinions, findings,
conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

Questions or comments about this material should be directed to the Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634.

A complete set of child-care training fact sheets can be downloaded from www.fightbac.org